SMK MAMBAU

SMK MAMBAU

Sunday 1 April 2012

Core concepts.......

Core concepts

At their core, all models of ubiquitous computing share a vision of small, inexpensive, robust networked processing devices, distributed at all scales throughout everyday life and generally turned to distinctly common-place ends. For example, a domestic ubiquitous computing environment might interconnect lighting and environmental controls with personal biometric monitors woven into clothing so that illumination and heating conditions in a room might be modulated, continuously and imperceptibly. Another common scenario posits refrigerators "aware" of their suitably tagged contents, able to both plan a variety of menus from the food actually on hand, and warn users of stale or spoiled food.
Ubiquitous computing presents challenges across computer science: in systems design and engineering, in systems modelling, and in user interface design. Contemporary human-computer interaction models, whether command-line, menu-driven, or GUI-based, are inappropriate and inadequate to the ubiquitous case. This suggests that the "natural" interaction paradigm appropriate to a fully robust ubiquitous computing has yet to emerge - although there is also recognition in the field that in many ways we are already living in an ubicomp world. Contemporary devices that lend some support to this latter idea include mobile phones, digital audio players, radio-frequency identification tags, GPS, and interactive whiteboards.
Mark Weiser proposed three basic forms for ubiquitous system devices, see also Smart device: tabs, pads and boards.
  • Tabs: wearable centimetre sized devices
  • Pads: hand-held decimetre-sized devices
  • Boards: metre sized interactive display devices.
These three forms proposed by Weiser are characterized by being macro-sized, having a planar form and on incorporating visual output displays. If we relax each of these three characteristics we can expand this range into a much more diverse and potentially more useful range of Ubiquitous Computing devices. Hence, three additional forms for ubiquitous systems have been proposed:[5]
  • Dust: miniaturized devices can be without visual output displays, e.g., Micro Electro-Mechanical Systems (MEMS), ranging from nanometres through micrometers to millimetres. See also Smart dust.
  • Skin: fabrics based upon light emitting and conductive polymers, organic computer devices, can be formed into more flexible non-planar display surfaces and products such as clothes and curtains, see OLED display. MEMS device can also be painted onto various surfaces so that a variety of physical world structures can act as networked surfaces of MEMS.
  • Clay: ensembles of MEMS can be formed into arbitrary three dimensional shapes as artefacts resembling many different kinds of physical object (see also Tangible interface).
In his book The Rise of the Network Society, Manuel Castells suggests that there is an ongoing shift from already-decentralised, stand-alone microcomputers and mainframes towards entirely pervasive computing. In his model of a pervasive computing system, Castells uses the example of the Internet as the start of a pervasive computing system. The logical progression from that paradigm is a system where that networking logic becomes applicable in every realm of daily activity, in every location and every context. Castells envisages a system where billions of miniature, ubiquitous inter-communication devices will be spread worldwide, "like pigment in the wall paint".

History

Mark Weiser coined the phrase "ubiquitous computing" around 1988, during his tenure as Chief Technologist of the Xerox Palo Alto Research Center (PARC). Both alone and with PARC Director and Chief Scientist John Seely Brown, Weiser wrote some of the earliest papers on the subject, largely defining it and sketching out its major concerns.[6][7][8]
Recognizing that the extension of processing power into everyday scenarios would necessitate understandings of social, cultural and psychological phenomena beyond its proper ambit, Weiser was influenced by many fields outside computer science, including "philosophy, phenomenology, anthropology, psychology, post-Modernism, sociology of science and feminist criticism." He was explicit about "the humanistic origins of the ‘invisible ideal in post-modernist thought'",[8] referencing as well the ironically dystopian Philip K. Dick novel Ubik.
Dr. Ken Sakamura of University of Tokyo, Japan leads the Ubiquitous Networking Laboratory (UNL), Tokyo as well as the T-Engine Forum. The joint goal of Sakamura's Ubiquitous Networking specification and the T-Engine forum, is to enable any everyday device to broadcast and receive information.[9][10]
MIT has also contributed significant research in this field, notably Things That Think consortium (directed by Hiroshi Ishii, Joseph A. Paradiso and Rosalind Picard) at the Media Lab[11] and the CSAIL effort known as Project Oxygen.[12] Other major contributors include Georgia Tech's College of Computing, NYU's Interactive Telecommunications Program, UC Irvine's Department of Informatics, Microsoft Research, Intel Research and Equator,[13] Ajou University UCRi & CUS.[14]

No comments:

Post a Comment